วันพุธที่ 11 กุมภาพันธ์ พ.ศ. 2558

ฟังก์ชันขั้นบันได

ฟังก์ชันขั้นบันได คือฟังก์ชันบนจำนวนจริงซึ่งเกิดจากการรวมกันระหว่างฟังก์ชันคงตัวจากโดเมนที่แบ่งออกเป็นช่วงหลายช่วง กราฟของฟังก์ชันจะมีลักษณะเป็นส่วนของเส้นตรงหรือรังสีในแนวราบเป็นท่อน ๆ ตามช่วง ในระดับความสูงต่างกัน  อ่านเพิ่มเติม

ฟังก์ชันค่าสัมบูรณ์

ฟังก์ชันค่าสัมบูรณ์
ฟังก์ชันค่าสมบูรณ์ถูกกำหนดโดยกฎซึ่งแบ่งออกเป็นสองกรณี
ค่าฟังก์ชันสมบูรณ์   จะกำหนดโดย  อ่านเพิ่มเติม

ฟังก์ชันเอกซ์โพเนนเชียล

ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร  อ่านเพิ่มเติม

การแก้ปัญหาโดยใช้ความรู้เรื่องฟังก์ชันกําลังสองและกราฟ

การแก้ปัญหาโดยใช้ฟังก์ชันกําลังสองและกราฟ เนื องจากกราฟของฟังกชันก ์ าลังสอง ํ f x = ax + bx + c 2 ( ) เมื อ a ≠ 0 ขึ นอยูก่ บคั ่าของ a,b และ c และกราฟหงายหรือควํ าขึ นอยู่กบคั ่าของ a นําค่าที ได้ไปหาค่าสูงสุดหรือตํ าสุด ถ้า a > 0 กราฟเป็ นโค้งหงาย และถ้า a < 0 กราฟเป็ นโค้งควํ า อ่านเพิ่มเติม

การนํากราฟไปใช้ในการแก้สมการและอสมการ


   รูป ก,ง กราฟตัดแกน X 2 จุด คือที่จุด A และ จุด B รูป ข,ค กราฟตัดแกน X 1 จุด คือที่จุด P หรือสัมผัสแกน X ที่จุด P
รูป ค,ฉ กราฟไม่ตัดแกน X กราฟอยู่เหนือแกน X และใต้แกน X ตามลำดับ  อ่านเพิ่มเติม

กราฟของฟังก์ชันกําลังสอง

1) กราฟของฟังก์ชันกำลังสอง ที่กำหนดด้วยสมการ y = ax^2 เมื่อ a ไม่เท่ากับ 0
กราฟของฟังก์ชันกำลังสอง มีชื่อเรียกว่า พาราโบลา ซึ่งลักษณะของกราฟของฟังก์ชันขึ้นอยู่กับค่าของ a , b และ c และเมื่อ a เป็นบวกหรือลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ และกราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ y = ax^2 เมื่อ a ไม่เท่ากับ 0 เมื่อ a > 0 และชนิดคว่ำ เมื่อ a < 0  อ่านเพิ่มเติม


ฟังก์ชันกําลังสอง

ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป เมื่อ a,b,c เป็นจำนวนจริงใดๆ และ ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ a , b และ c และเมื่อค่าของ a เป็นบวกหรือลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ  ดังรูป อ่านเพิ่มเติม 
   

   

ฟังก์ชันเชิงเส้น

ในคณิตศาสตร์ขั้นสูง ฟังก์ชันเชิงเส้น หมายถึง ฟังก์ชันที่เป็น ฟังก์ชันเชิงเส้น มักหมายถึง คณิตศาสตร์ ที่เป็น การสายเส้นตรง ระหว่างสองกลุ่มเวกเตอร์

ตัวอย่าง ถ้า และ คือ เวกเตอร์ตัวประสาน ฟังก์ชันเชิงเส้นจะเป็นบรรดาฟังก์ชัน ที่แสดงได้ในรูปร่าง, โดยที่ M คือ เมตริก

ฟังก์ชัน จะเป็น การสายเส้นตรง ก็ต่อเมื่อ เท่านั้น  อ่านเพิ่มเติม

ฟังก์ชัน

  สำหรับความหมายอื่น ดูที่ ฟังก์ชัน
"f(x)" เปลี่ยนทางมาที่นี่ สำหรับวงดนตรีเกาหลี ดูที่ เอฟ (เอกซ์)

ในคณิตศาสตร์ ฟังก์ชัน คือ ความสัมพันธ์ จาก เซต หนึ่ง (โดเมน) ไปยังอีกเซตหนึ่ง (โคโดเมน ไม่ใช่ เรนจ์) โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน ความคิดรวบยอดของฟังก์ชันนี้เป็นพื้นฐานของทุกสาขาของคณิตศาสตร์และวิทยาศาสตร์เชิงปริมาณ  อ่านเพิ่มเติม

โดเมนและเรนจ์

เซตของสมาชิกตัวหน้าในคู่อันดับของ r1 = {1,2,3,4} เรียกเซตนี้ว่า โดเมนของ r1
เซตของสมาชิกตัวหลังในคู่อันดับของ r1 = {2,3,4,5} เรียกเซตนี้ว่า เรนจ์ของ r1
ส่วนใน r2 จะเห็นว่าโดเมนของ r2 เท่ากับเรนจ์ของ r2 คือเซตของจำนวนเต็ม  อ่านเพิ่มเติม

ความสัมพันธ์

ความสัมพันธ์ทวิภาค เป็นความสัมพันธ์กันของวัตถุคณิตศาสตร์ เช่น การเท่ากัน (=) หรือการน้อยกว่า (<) ตัวอย่างเช่น "5 < 6" และ "2 + 2 = 4" อ่านเพิ่มเติม  

ความสัมพันธ์และฟังก์ชัน

1.คู่อนั ดับ ในวิชาคณิตศาสตร์การจับคู่ระหว่างสิ่งสองสิ่งที่มีความสัมพันธ์กันจะใช้คู่อันดับ เป็ นสัญลักษณ์แทนสิ่งสองสิ่งที่มีความสัมพนัธ์กนั เช่น (2,4) หมายถึง 2 มีความสัมพนัธ์กบั 4 ในกรณีทวั่ ไป เราจะเขียนคู่อนัดบั ในรูป (a,b) เรียก a วา่ สมาชิกตวัแรกของคู่อนัดบ อ่านเพิ่มเติม


ค่าสัมบูรณ์ของจํานวนจริง

ค่าสัมบูรณ์ หรือ มอดุลัส (อังกฤษ: absolute value หรือ modulus) ในคณิตศาสตร์ คือ ผลต่างระหว่างจำนวนนั้นกับ 0 พูดง่ายๆคือ จำนวนที่ไม่มีเครื่องหมายลบ ตัวอย่างเช่น 3 คือค่าสัมบูรณ์ของ 3 และ −3 อ่านเพิ่มเติม

การไม่เท่ากัน

การเท่ากันของจำนวนจริง
การเท่ากันของจำนวน เราใช้ “ = ” แทนการเท่ากัน เช่น

1 + 2 = 3 ; 6 x 2 = 12

5 – 3 = 2 ; 24 ÷ 3 = 8  อ่านเพิ่มเติม

การแก้สมการกําลังสองตัวแปรเดียว

เรื่อง สมการกำลังสองตัวแปรเดียว ใจความสำคัญของเรื่องนี้ อยู่ที่การแก้สมการกำลังสองตัวแปรเดียว ซึ่งในการแก้สมการกำลังสองตัวแปรเดียวนั้น ไม่ยากครับ แต่ต้องฝึกทำบ่อยๆ ทำโจทย์เยอะๆครับ อ่านเพิ่มเติม

การแยกตัวประกอบของพหุนาม

การแยกตัวประกอบ (อังกฤษ: factorization) ในทางคณิตศาสตร์ หมายถึงการแบ่งย่อยวัตถุทางคณิตศาสตร์ (เช่น จำนวน พหุนาม หรือเมทริกซ์) ให้อยู่ในรูปผลคูณของวัตถุอื่น ซึ่งเมื่อคูณตัวประกอบเหล่านั้นเข้าด้วยกันจะได้ผลลัพธ์ดังเดิม ตัวอย่างเช่น จำนวน 15 สามารถแยกตัวประกอบให้เป็นจำนวนเฉพาะได้เป็น 3 × 5 และพหุนาม สามารถแยกได้เป็น เป็นต้น อ่านเพิ่มเติม

การนําสมบัติของจํานวนจริงไปใช้ในการแก้สมการกําลังสอง

ในการเขียนสัญลักษณ์แทนจำนวน นิยมใช้ตัวอักษรภาษาอังกฤษตัวเล็ก เช่น x, y แทนจำนวน และเรียกอักษรเหล่านั้นว่า ตัวแปร สำหรับตัวเลขที่แทนจำนวน เช่น 1,2,3 เรียกว่า ค่าคงตัว เรียกข้อความในรูปสัญลักษณ์ เช่น 2, 3x, 5+x, x-8 ว่า นิพจน์เรียกนิพจน์ที่เขียนให้อยู่ในรูปการคูณของค่าคงตัวกับตัวแปรตั้งแต่หนึ่งตัวขึ้นไปที่มีเลขชี้กำลังของตัวแปรเป็นจำนวนเต็มบวกหรือศูนย์ เช่น -3, 2x, 3xy ว่า เอกนาม และเรียกนิพจน์ที่สามารถเขียนในรูปของเอกนามหรือการบวกเอกนามตั้งแต่สองเอกนามขึ้นไปว่า พหุนาม  อ่านเพิ่มเติม

การบวกและการคูณในระบบจํานวนจริง

ในระบบจำนวนจริง มีเอกลักษณ์การบวกจำนวนเดียวคือ 0 เมื่อ a เป็นจำนวนจริงใดๆ a+0 = a = 0+a

ในระบบจำนวนจริง อินเวอร์สการบวกของจำนวนจริง a หมายถึง จำนวนจริงที่บวก a แล้วได้ผลลัพธ์เป็น 0 ใช้สัญลักษณ์ “-a” แทนอินเวอร์สการบวกของจำนวนจริง a อ่านเพิ่มเติม

การเท่ากันในระบบจํานวน

กำหนด a, b, c เป็นจำนวนจริงใดๆ
1. สมบัติการสะท้อน a = a
2. สมบัติการสมมาตร ถ้า a = b แล้ว b = a  อ่านเพิ่มเติม


สมบัติของจํานวนจริงเกี่ยวกับการบวกและการคูณ

จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ และเขียนในรูปทศนิยมซ้ำได้  อ่านเพิ่มเติม

จํานวนจริง

จำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis)  อ่านเพิ่มเติม

การให้เหตุผลแบบนิรนัย

   การให้เหตุผลแบบนิรนัยเป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ ข้อตกลง กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด อ่านเพิ่มเติม

การให้เหตุผลแบบอุปนัย

การให้เหตุผลแบบอุปนัย เป็นวิธีการสรุปผลมาจากการค้นหาความจริงจากการสังเกตหรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป อ่านเพิ่มเติม

การให้เหตุผล

การให้เหตุผลทางคณิตศาสตร์ (หรือการอ้างเหตุผล) คือ กระบวนการคิดของมนุษย์ และสื่อความหมายกับผู้อื่นด้วยภาษา ซึ่งประกอบด้วยข้อความ หรือประโยคกลุ่มหนึ่งที่ยกขึ้นมาเพื่อสนับสนุนให้ได้ข้อความ หรือประโยคตามมา มักจะแสดงในส่วนของ เหตุ เราเรียกข้อความกลุ่มแรกนี้ว่า ข้ออ้าง (Premisses) และข้อความอีกชุดหนึ่งที่แสดงในส่วนของ ผล จะถูกเรียกว่า ข้อสรุป (Conclusion) อ่านเพิ่มเติม

ยูเนี่ยน อินเตอร์เซกชันและคอมพลีเมนต์ของเซต

ยูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต เป็นส่วนหนึ่งของการกระทำระหว่างเซต เรานิยมเขียนออกมาในสองรูปแบบด้วยกันคือแบบสมการ และแผนภาพเวนน์-ออยเลอร์ เราลองมาดูกันครับว่ายูเนียน อินเตอร์เซกชัน และคอมพลีเมนต์ของเซต เป็นอย่างไรพร้อมตัวอย่าง อ่านเพิ่มเติม

สับเซตและเพาเวอร์เซต


ถ้าสมาชิกทุกตัวของ A เป็นสมาชิกของ B แล้ว จะเรียกว่า A เป็นสับเซตของ B จะเขียนว่า
เซต A เป็นสับเซตของเซต B แทนด้วย A ⊂ B

ถ้าสมาชิกบางตัวของ A ไม่เป็นสมาชิกของ B จะเรียกว่า A ไม่เป็นสับเซตของ B
เซต A ไม่เป็นสับเซตของเซต B แทนด้วย A ⊄ B อ่านเพิ่มเติม

เอกภพสัมพัทธ์

เอกภพสัมพัทธ์ (Relative Universe) ในการพูดถึงเรื่องใดก็ตามในแง่ของเซต เรามักมีขอบข่ายในการพิจารณาสมาชิกของเซตที่จะกล่าวถึง โดยมีข้อตกลงว่าเราจะไม่กล่าวถึงสิ่งใดนอกเหนือไปจากสมาชิก ของเซตที่กำหนดขึ้น เช่น ถ้าเรากำหนดเซตของสมาชิกทุกคนในครอบครัวของผู้เรียนเองให้เป็นเซตใหญ่ที่สุด อ่านเพิ่มเติม

เซต

    เซต (อังกฤษ: set) ในทางคณิตศาสตร์นั้น อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่ อ่านเพิ่มเติม